Actuator Network for Low cost and High Safety

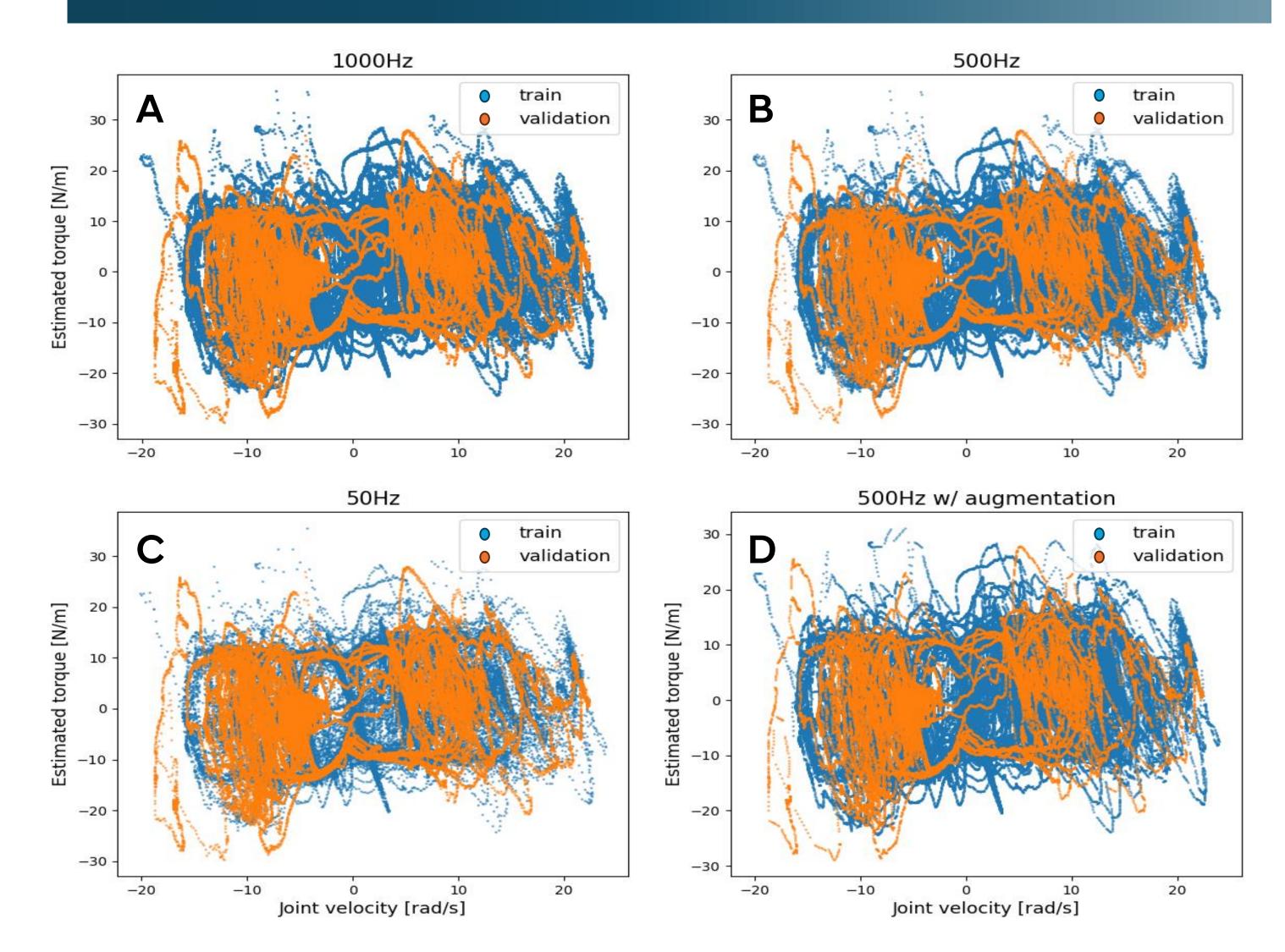
Jaesung Ahn¹, Daekeun Yoon², Taeyu Kim², Myeongsu Kim², Hyeonsik Shin², Hunkeon Ko², Dongjin Hyun²

^{1,2}Hyundai Motor Company, Robotics Lab

Research Goal

The primary goal of this work is <u>to strengthen sim-to-real</u> <u>robustness using an actuator model without torque sensors</u>, <u>considering the issue of insufficient data</u>. In this study, we :

 Compare target torque mapping capabilities across different data frequencies.



Results

• Analyze the model training with augmented data.

Methods

Train the network without using torque sensors

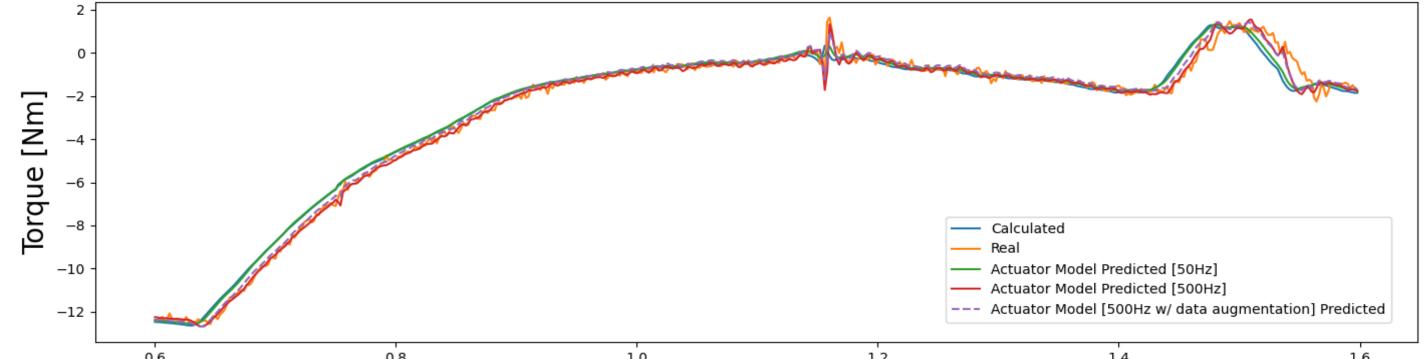
The conventional actuator network [1] uses the actual torque (from the torque sensor) as the ground truth for training the model, but we replace it with torque estimates based on current values:

$$\tau_{est} = i * K_t * n$$

 τ_{est} is the estimated torque value, *i* denotes the current, K_t is the torque constant and *n* is the gear ratio.

Use augmented, realistic data based on DC motor dynamics to train the network

We select several data points that satisfy the relationship angular velocity and torque of the motor [2], and then perform linear interpolation with the existing data to generate training data. **Fig 1. Train and validation data set (velocity and torque distribution).** A is collected at 1000Hz, while B, C, D are resampled from A at 500Hz, 50Hz, and with data augmentation, respectively.



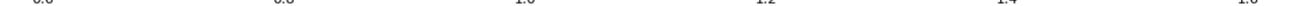
$$V_a = \frac{R}{K_t}\tau + \frac{1}{K_v}\omega$$

 V_a is the voltage applied to counteract the motor's resistance R, K_t is the torque constant, K_v is the speed constant, ω is the angular velocity.

The structure of the actuator network for training follows previous work [1] with minor modifications.

Actuator Network Description	
Input layer	6
Hidden layer	[32 32]
Output layer	1
Network Input	$\dot{q}_{t\sim t-2}$, $\dot{q}_{error}_{t\sim t-2}$
Network Output	$ au_d$
Training data	$\dot{q}, \dot{q}_d, \tau_{est}$

- *q* : Measured joint velocity
- \dot{q}_d : Desired joint velocity
- \dot{q}_{error_t} : \dot{q}_d \dot{q}_t
- $t \sim t 2$: History of the current state to two steps in the past
- τ_d : Actuator model predicted torque
- $au_{\rm est}$: Estimated torque based on current values



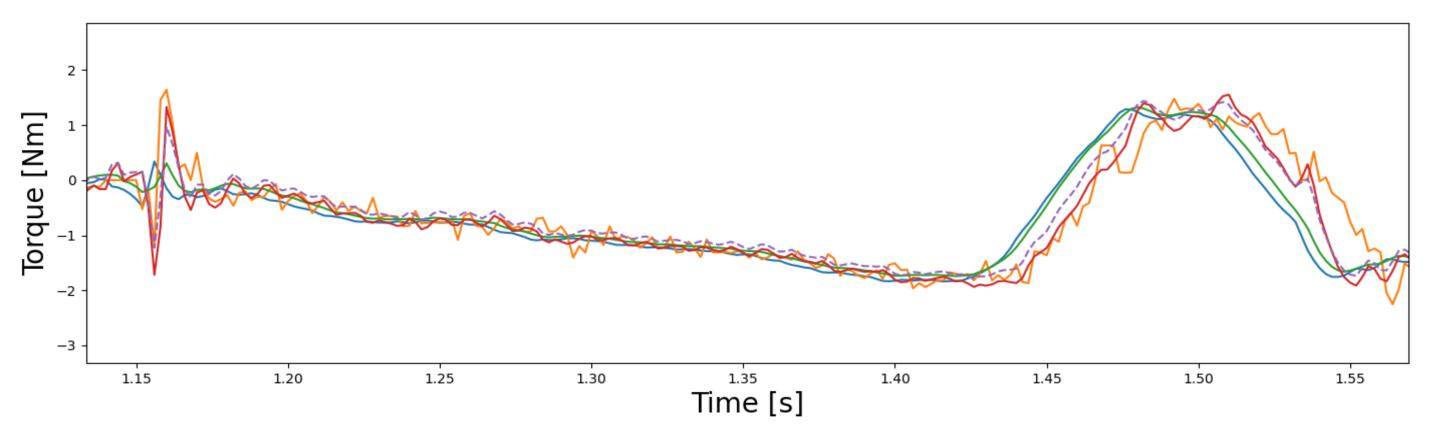


Fig 2. Estimation results of target torque. The calculated torque (blue) is computed from the robot controller.

- The trained model effectively maps joint states to joint torque even when trained with estimated torque and augmented data.
- Actuator network captures internal joint stiffness, enabling more sensitive error responses.
- A higher data sampling rate results in smaller errors compared to the idealized torque, but a lower rate provides smoother results.

Conclusion

 The proposed actuator network predicts the target torque without a torque sensor (reducing costs) and shows potential for modeling unseen states (enhancing safety) using data augmentation.

Activation function	softsign
Loss function	$MSE(\tilde{\tau}_d, \tau_{est})$

- Collected the training dataset by running a real robot controller (1000Hz) without the actuator network, under various conditions (e.g., load, slope, disturbance).
- 80% of the collected data is used for training, while 20% is allocated to the validation set.
- Future work will explore the network's ability to identify non-Markovian properties.

References

[1] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

[2] Young-Ha Shin, Tae-Gyu Song, Gwanghyeon Ji, and Hae-Won Park. Actuator-constrained reinforcement learning for high-speed quadrupedal locomotion. arXiv preprint arXiv:2312.17507, 2023.

