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• Compare target torque mapping capabilities across different 
data frequencies.

• Analyze the model training with augmented data.

Research Goal

Methods

The primary goal of this work is to strengthen sim-to-real 
robustness using an actuator model without torque sensors, 
considering the issue of insufficient data. In this study, we :

Results

• The trained model effectively maps joint states to joint torque 
even when trained with estimated torque and augmented data.

• Actuator network captures internal joint stiffness, enabling 
more sensitive error responses. 

• A higher data sampling rate results in smaller errors compared 
to the idealized torque, but a lower rate provides smoother 
results.

• Train the network without using torque sensors
 The conventional actuator network [1] uses the actual torque 
(from the torque sensor) as the ground truth for training the 
model, but we replace it with torque estimates based on current 
values:

𝜏𝑒𝑠𝑡 = 𝑖 ∗ 𝐾𝑡 ∗ 𝑛

𝜏𝑒𝑠𝑡 is the estimated torque value, 𝑖 denotes the current, 𝐾𝑡 is the 
torque constant and 𝑛 is the gear ratio.

• Use augmented, realistic data based on DC motor 
dynamics to train the network

 We select several data points that satisfy the relationship angular 
velocity and torque of the motor [2], and then perform linear 
interpolation with the existing data to generate training data.
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𝑉𝑎 is the voltage applied to counteract the motor’s resistance 𝑅, 
𝐾𝑡 is the torque constant, 𝐾𝑣 is the speed constant, 𝜔 is the 
angular velocity.

 The structure of the actuator network for training follows
previous work [1] with minor modifications.

- Collected the training dataset by running a real robot controller 
(1000Hz) without the actuator network, under various 
conditions (e.g., load, slope, disturbance).

- 80% of the collected data is used for training, while 20% is 
allocated to the validation set.

Conclusion

• The proposed actuator network predicts the target torque 
without a torque sensor (reducing costs) and shows potential 
for modeling unseen states (enhancing safety) using data 
augmentation. 

• Future work will explore the network’s ability to identify non-
Markovian properties. 

Fig 1. Train and validation data set (velocity and torque distribution). A is collected at 1000Hz, 
while B, C, D are resampled from A at 500Hz, 50Hz, and with data augmentation, respectively. 

References

Actuator Network Description
Input layer 6

Hidden layer [32 32]

Output layer 1

Network Input ሶ𝑞𝑡~𝑡−2 , ሶ𝑞𝑒𝑟𝑟𝑜𝑟𝑡~𝑡−2

Network Output 𝜏𝑑

Training data ሶ𝑞, ሶ𝑞𝑑 , 𝜏𝑒𝑠𝑡

Activation function 𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛

Loss function 𝑀𝑆𝐸( ǁ𝜏𝑑 , 𝜏𝑒𝑠𝑡) 

Fig 2. Estimation results of target torque. The calculated torque (blue) is computed from the robot 
controller.
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▪ ሶ𝑞 : Measured joint velocity
▪ ሶ𝑞𝑑 : Desired joint velocity
▪ ሶ𝑞𝑒𝑟𝑟𝑜𝑟𝑡 : ሶ𝑞𝑑 - ሶ𝑞𝑡

▪ 𝑡~𝑡 − 2 : History of the current 
state to two steps in the past

▪ 𝜏𝑑 : Actuator model predicted 
torque

▪ 𝜏est : Estimated torque based on 
current values
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