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Abstract—In this study, we explore the performance of an ac-
tuator network that does not rely on torque sensors and propose
a future actuator network designed to reduce vulnerabilities in
untrained data while also eliminating the dependence on torque
sensors. Our actuator network utilizes estimated torques instead
of measured torques from sensors. Additionally, to mitigate the
lack of training data, we performed data augmentation through
modeling and collected data from various environments.

I. INTRODUCTION

With the increasing research on learning-based controllers
for robot control, the significance of sim-to-real has become
more prominent [1], [2]. However, sim-to-real gap remains
a major challenge that needs to be addressed. To tackle
this issue, several approaches have been proposed, including:
domain randomization [3]–[5], hierarchical control framework
with model-based controllers [6]–[9], and system identification
[1].

In particular, data-driven actuator network [1], [5] is gaining
attention for achieving system identification in difficult-to-
model systems. However, traditional actuator networks require
torque sensors and face out-of-distribution (OOD) issues [10]
when operating in regions with limited training data, such
as near torque and velocity limits or in areas where actions
change rapidly. As the degrees of freedom in a robot increase,
the need for 1-axis torque sensors in each joint significantly
raises costs, and collecting all the necessary data to address
OOD issues becomes prohibitively expensive. To address this,
we propose an actuator model that reduces costs and ensures
safety.

II. METHODS

In this section, we propose the design of an actuator network
for low cost and high safety. For this, we focused on answering
the following questions:

• Can we utilize the actuator model without a torque
sensor? Moreover, how significant is the performance
difference with and without a torque sensor?

• (future work) How does the learned model differ based
on the data collection frequency (high frequency vs. low
frequency)?

• (future work) For the safe operation of the robot, what
efficient methods can solve the OOD problem when
limited learning data is available?

To develop an actuator network that satisfies the above con-
ditions, we propose two methods: utilizing torque estimation
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Fig. 1. Estimated target torque from the proposed actuator model

and data augmentation. For torque estimation, instead of using
torque sensors as in conventional actuator models, we replace
the sensor-measured values with torque estimates based on
current values. The estimated torque is derived from the motor
current, torque constant, and gear ratio as follows:

τest = i ∗Kτ ∗ n, (1)

where τest represents the estimated torque value, i denotes the
current, Kτ is the torque constant, and n is the gear ratio.

To address the OOD problem, we use data augmentation
based on DC motor modeling within a physically appropriate
range. [11] We enriched the training dataset with data gener-
ated through modeling that leverages the relationship between
angular velocity and torque of the motor.

The structure of the actuator network for training follows
previous work [1] with minor modifications. The training data
was collected from a real robot at 1kHz. Since this network is
specifically designed for wheel joints, we used joint velocity
error instead of joint position error in the loss function. The
input layer includes both the joint velocity error and joint
velocity from the current time step as well as from n-step
previous time steps. Additionally, we collected the actua-
tor network’s training dataset by running a robot controller
without the actuator network, under various conditions (e.g.,
load, slope, disturbance). This allowed the robot to operate
at different speeds and learn a broad range of velocity-torque
relationships.

III. RESULTS AND DISCUSSIONS

The experimental results showed that the network trained
with estimated torque effectively tracked trends, despite some
outliers. These outliers appeared more often in unfamiliar
conditions, such as altered data input intervals or limited
training data, requiring further analysis. The proposed actuator
network captures internal joint stiffness, enabling more sensi-
tive error responses. As the network considers input history,
future work will focus on investigating its ability to identify
non-Markovian properties and implementing it on a real robot.
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